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ABSTRACT 

This is an investigation of the connections betweeD bases and weaker struc- 
tures in Banach spaces and their duals. It is proved, e.g., that X has a basis if 
X* does, and that if X has a basis, then X* has a basis provided that X* is 
separable and satisfies Grothendieck's approximation property; analogous 
results are obtained concerning n-structures and finite dimensional Schauder 
decompositions. The basic results are then applied to show that every separable 
,.~p space has a basis. 

1. Introduction. Very little is known about the geometry of  a general Banach 

space, its subspaces and its projections. However, the common Banach spaces 

usually have a family {E~}, directed by inclusion, of  "n ice"  finite dimensional 

subspaces, which span the whole space. We wilt call such a family a structure. 

The effect of  the structure on the properties of  the space obviously depends on 

how nice the subspaces E~ are. In several instances (see e.g. ]-7], [9] and 1-10]), 

where the subspaces E,  satisfy some strong properties, interesting theories are 

developed, thus demonstrating that a Banach space with a structure is easier to 

handle. In the sequel we will restrict ourselves to four types of  structure deter- 

mined by the following properties: 

(1) The bounded approximation property (b.a.p., in short) (cf. [-3] p. 182). 

Let 2 >= 1. A Banach space X is said to have the 2-metric approximation property 

(2-m.a.p. in short) if for every finite dimensional subspace E c X and every 

e > 0 there is an operator T with finite dimensional range on X such that 

[[ TI[ _-< 2 and [] T x - x  [1 =<e [[ x [[ for all x e E .  The space X is said to have the 

bounded approximation property if it has the 2-m.a.p. for some 2 ___ 1. 
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(2) The ~z property (cf. [4] and I-7] p. 25): Let 2 > 1. A Banach space X 

is called a zca space if X = U ~ a  E~, where {E~)~ ~A is a set, directed by inclusion, 

of finite dimensional subspaces of X ,  such that for every ct ~ A there is a projection 

T, from X onto E~ with II T~ [l =< 2. The space X is called a zc space if it is a zc~ 

space for some 2 > 1. 

(3) The finite dimensional decomposition property (f.d.d.p., in short): A 

Banach space X is said to have the f.d.d.p, if there is a sequence {F~} of finite 

dimensional subspaces of X such that each x ~ X has a unique representation 

x = ~,~= 1 P~x with P~x ~ F~ for all n.  The sequence {F~) is called a finite di- 

mensional decomposition (f.d.d., in short) for X.  It is known that the functions 

P~x are bounded linear projections on X and that PnPk = 6~,kPk for all n and k. 

Moreover, for each n,  the operator Qn = ~ =  1Pk is a projection from X onto 

E~ = span {U ~= 1 Fk}, Qn ~ I strongly and QnQk = QkQn = Qmtn(k.n) for all k 

and n. We will refer to the Qn as the projections which determine the decompo- 

sition, or, the natural projections of the decomposition. 

(4) The basis property. A sequence {x,} of elements of a Banach space X 

is called a basis if each x ~ X has a unique representation x = ~ a~x i where 

{as) are scalars. A space X is said to have the basis property if it has a basis. The 

projections {Q,} defined by Q, ( ~,~ a i x i )  = ~n= 1 aixi are linear and bounded; 

they will be called the natural projections of the basis. 

Each of the first two properties has several equivalent definitions which may 

be more convenient in various situations. Using Lemma 2.4 below, one can easily 

prove the following 

PROPOSITION 1.1. Let X be a Banach space. Then (a), (b) and (c) below are 

equ ira lent: 

(a) X has the b.a.p. 

(b) There is a uniformly bounded net {T,} of operators with finite dimensional 

ranges which tends strongly to the identity on X .  

(c) There is a ). > 1 satisfying the following property: for every f ini te  

dimensional subspace E ~ X there is an operator T with finite dimensional 

range on X such that II z It =< ~ and Zx  = x for all x ~ E.  

PROPOSITION 1.2. Let X be a Banach space. Then the following assertions 

are equivalent: 

(a) X is a n space. 
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(b) There is a uniformly bounded net {T~} of projections with finite dimen- 

sional ranges which tends strongly to the identity on X .  

(c) There is a 2 > 1 satisfying the following property: for every finite 

dimensional subspace E c X there is a projection T with finite dimensional 

range on X such that Tx  = x Jor all x e E and II T II --< ~ 

In the sequel we will use any one of the equivalent definitions of these properties 

without any reference. Let us now remark that in the case of separable Banach 

spaces, each of the last three properties (2), (3) and (4) implies the preceding one. 

All the classical Banach spaces have the b.a.p, but it is unknown whether 

every Banach space shares this property. It is also an open problem whether any 

two of the above four properties are equivalent (in the separable case, say). The 

purpose of this paper is to investigate the connections among the structures of 

a Banach space X ,  its dual X* and its second dual X** (provided that at least 

one of those spaces has a structure). In Section 3 we investigate the effect of the 

structure of X** on that of X.  We prove, for example, that if X** is a ~a space 
then X is a rq+~ space for every e > 0. In Section 4 the relations between the 
structures of X and X* are studied. We prove the following 

THEOREM 1.3. Let X be a separable Banach space. Then X has the f.d.d.p. 

i f  any of the following hold: 

(a) X is a ~ space and X* satisfies the b.a.p. 

(b) X* is a 7z space 

(c) X is arc space and X is isomorphic to a conjugate Banach space 

(d) There exists a sequence (P,} of finite rank projections on X such that 

P~P, = P,n for all m, n with m <= n and P,x  ~ x weakly for all x ~ X .  

Moreover, if  X* is separable and either (a) or (b) holds, then X has a shrinking 

finite dimensional decomposition. 

THEOREM 1.4. Let X be a Banach space; then X has a shrinking basis (and 

consequently X* has a boundedly complete basis) if  either of the following holds: 

(a) X* has a basis 

(b) X has a basis and X* is separable and has the b.a.p. 

(See the definitions in Section 2 below.) 

Thus in particular, we answer affirmatively the question raised by S. Karlin 

in [-6] : if X* has a basis, does X have a basis? We also partially solve J. R. Rether- 

ford's Problem 1 of 1-14]. Finally, in Section 5 we apply our results to show 

that every separable L~ap space has a basis. 
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2. Definitions, notations and preliminary lemmas 

In this section we explain the terminology we use and state several auxiliary 

lemmas. These lemmas are of  a technical nature; they are easy and are demon- 

strated by known techniques. Some of the proofs will be therefore omitted. 

In this paper an operator (resp. projection) always means a bounded linear 

operator (resp. projection). Two Banach spaces X and Y are called isomorphic 

(denoted by X ~ Y) if there is an invertible operator from X onto Y. The distance 

coefficient d{X, Y} of two isomorphic Banach spaces is defined by inf(][ wll liT-111) 
where the inf is taken over all invertible operators T from X onto Y. Let A be 

a set of elements of a Banach space X.  We denote by span A the closed linear 

subspace spanned by A in X .  

Let X be a Banach space and let E be a subspace of X .  We denote by I E the 

identity on E.  Let T be an operator on X ,  then T[~ denotes the restriction of 

T t o  E.  

Let E be a subspace of  a Banach space X .  Then E -L denotes the annihilator 

of  E in X*(=  {x* e X* : x*(e) = 0 for all e e E}). If F c X* then F l  denotes 

the annihilator of F in X ( =  {x E X: f ( x )  = 0 for all f e  F}) .  Let {x,} be a basis 

o f a  Banach space X.  The sequence {f,} of functionals defined by f , ( ~ a i x i )  = a, 

is called the biorthogonal sequence of the basis {Xn}. It is well known (see e.g. 

[ l ]  p. 67) that {J,} c X* and that Qn, the natural projections of the basis, are 

uniformly bounded. We call b = sup, II Q. II the basis constant. (Similarly, let 

X have a finite dimensional decomposition determined by the projections {Q,}, 

then sup, [I Q. II is finite and is called the decomposition's constant). 

Given Banach spaces A and B, A • B denotes the Banach space A x B under 

the obvious operations with norm II(a,b) ll = max (11 a II, II b H)" Given 

1 < p < oo and Banach spaces X~, X2 , ' . ' , (  ~ @ X,)p denotes the Banach space 

consisting of  all sequences (x,) with x,  ~ X,  for all n and 

II (x,,)II = [I x.  oo. 

L~MMA 2.1. (a) Let X and Y be isomorphic Banach spaces with d{X, Y} < c 

and let X have a basis with constant b. Then Y has a basis with constant < bc. 

(b) Let X be a Banaeh space with a basis {x,}. Assume that the basis' 

constant is b. Then the biorthogonal functionals form a basis with constant 

<= b in the subspaee spanned by them in X*. 
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(C) Let E be a finite dimensional subspace of a Banach space X and let P 

be a projection from X onto E with II P I] = M .  Assume that E has a basis 

{e.} with constant b. Then P*(X*) has a basis with a constant < M b .  

LEMMA 2.2. Let a Banach space X have a finite dimensional decomposition 

determined by the projections {Q.}. Let each subspace ( Q . -  Q ._ I ) (X)  have 

:x"~a(") with constant bn such that sup. b. = b < o o .  ( d ( n ) =  a basis t i l i = l  

d i m ( Q . - Q . _ l ) ( x  ) and Qo is the zero operator.) Then the sequence 

1 1 1 2 X 2 ,  . . .  2 3 ... forms a basis for X X l , X 2 ,  . . .  Xd(1) , Xl~ Xd(2)~ XI~ 

Let {F.} be a finite dimensional decomposition of  a Banach space X and let 

(Q.} be its natural projections. The decomposition is called shrinking if 

X* = span (Q*(X*)}ff= 1. A basis (x.} of X is called shrinking if its biorthogonal 

functionals { f . ) spanX*.  The basis {x,) is called boundedly complete if ~,~aix~ 

converges whenever sup. II ZTol a:, II < ~" 
It is known (see e.g. [1] p. 70-71) that {x.} is a shrinking basis if and only if 

{f.} is a boundedly complete basis for X*.  

Let X be a Banach space, let E1 and E 2 be subspaces of X and let e > 0. We 

say that E z is e-close to E 1 if there is an invertible operator T from E I onto E 2 

with I[ Zx - x II < e  II x II for all x e E 1 . 

LEMMA 2.3. Let X be a Banach space and let El ,  E2, F1 and F2 be closed sub- 

spaces of  X .  Assume that for each i = 1,2 F~ c E i and there is a projection 

B, f rom E, onto F, with II B, II -- c,. Let t5 and e be positive numbers such that 

~5c 1 + e(1 + cl) < ½ and let F2 be cS-cIose to F1 and E 2 e-close to E l .  Then 

d{(I - B1)(El) ,  (I - B2)(E2)} < 3(1 + cl)(1 + c2). 

PROOF. Let  U: El ~ E2 and V • F1 --+ F2 be surjective one-to-one operators 

such that I I z E , - u [ I  __<e and 1 [ I ~ , - v i i  =< ~. Define T : E  1 --+ E 2 by 

Tx  = V B l x +  U ( x - B l x )  for all x e E l .  Fixing x e E l  we have that 

ilWx-~ll _-< I I V B : - B :  II + l iU(x-B:)-(x-nlx) l l  ~ ~clll x I1 +~(1+cl)II xll <-- 
(~)[Ixl[. 

It follows that T is an invertible operator carrying E1 onto E2 and F1 onto F2 

such that I1TII II Z-1 II--< 3. hence d(E:,~/F~) < 3). Moreover, for 

i =  1,2 d((I-n,)(e,). E,/Fi)<-II Z - n ,  II =< 1 +  c, since if ~b, is the natural 

isomorphism from E,/Fi onto ( I -B i ) (E i ) ,  then il ~bi [I = li I - Bill and 1[ ffi-x tl = 1. 

Thus d((I-B1)(El) , (/-B2) (E2)) -< d((l-B1) (El), EI/FI)'d(EI/FI, E2/F2). 

d(E2/F2,(I -B2)(E2))  < 3(1 + cl)(1 + c2). 
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LEMMA 2.4. Let T be an operator from a Banach space X onto an n-di- 

mensional subspace E c X .  Let k < n and let F be a k-dimensional subspace 

of X such that I[ Z l v -  zvll < 1, where ( 1 - e ) - l e k  < 1. Then 

(a) there is an operator S from X onto an n-dimensional subspace of X 

such that Sly = Iv ,  I IS-TII  < ( 1 - ~ ) l ~ k [ I  z l l ,  and S*(X*)= T*(X*).  

(b) If, in addition, T is a projection then S can be chosen to he a projection 

and [I S i r ( x ) -  IT(X)[I < ( 1 -  e)- lek.  

PROOF. Obviously the restriction U = Tip is an invertible operator from F 

onto T(F) with [1 U [[ < 1 + e  and [[ U - l  I[ < ( l - s ) - 1 ;  hence I[ U- l - I t ( v ) [ [  < 

s (1 -e ) -1 .  It is known that there always exists a projection from a Banach space 

onto its k-dimensional subspace, of norm less than or equal to k (e.g., this fol- 

lows from [15]). Let P be a projection from E = T X  onto TF with [] P I] =< k,  

put V =  U-1P + I E -  P, a n d p u t S  : VT. Wehavetha t  ][ V-Ie[] = ]l U - 1 P -  P[] 

= l[ ( U - l - I T ( F )  P l[ < ke(1-e)  -1 < 1, hence V: E ~  X is a one-to-one operator, 

thus T and S have the same null space which implies that T* and S* have the 

same range (in view of the finite codimensionality of the null space of T). We 

have that S Iv = Iv and S is a projection if T is. The remaining assertions of the 

lemma follow easily from the definition of S. 

3. Local  reflexivity of  Banach spaces and its consequences 

In this section we will be interested in the connections between the structure 

of X** and that of X.  It has been recently proved ([10] Theorem 3.1) that the 

finite dimensional subspaces of X** are "almost the same" as those of X .  Let 

us state this result in a slightly stronger version (which is still yielded by the 

argument of [10]); namely: 

The principle of local reflexivity: Let X be a Banach space (regarded as 

a subspace of X**) let U and F befinite dimensional subspaees of X** and X * ,  

respectively, and let e > O. Then there exists a one-to-one operator T: U ~ X 

with T(x) = x for all x e X ~ U ,  f (Te )  = e(f)  for all e E U  and f e F  and 

JJ T lJ IJ T-11t < ' + 

A MODIFICATION OF THE PROOF OF [10] : Given a subset L of a Banach space 

F, let ~ denote the weak* closure of Land  L the norm-interior of Z. in Y**. Ob- 

serve that if the space Y and its subsets U1, U2,... , U,,L, and {Yo} are given 

where U1,. . . ,U n are open convex, L + Yo is a closed linear subspace of finite 

codimension and L ~ U I ~ . . . n U ~  ~,  then L N U l n . . . ~ U ,  ~ ~.  In- 
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deed we may assume Yo = 0; then for any open convex subset V o f  Y V n [ ,  c 

Vn"-~L (see Appendix). Hence V c3~ is contained in the norm-interior of 

relative to L .  This enables us to assume w.l.g, that L = Y. 

Should U l n . - . n  Un = ~b, by a theorem of Klee (c.f. [10], p. 348) 

there would exist a linear map S from Y onto a finite dimensional space B 

such that n T = l s ( u i ) =  qS. Whence since S**(U~)= S(UI) ([101, p. 332), 

n ~ = l  u i = ~b, a contradiction. Now let k, uI,...,Ug and C1," ' ,C, , , ,K~, '"Km 

be defined as in [101, p. 333 and put L = {(xl, . . . ,Xk):f(xi) = ui(f)  for a l l f E F  

and all 1 < i < k}. The existence of T follows if L o  Aim=~ C i n K i  # q~. 

Obviously there is a y ~ X k so that L + y is a closed linear subspace of finite 

codimension in X k. But (us, "", Uk) ~/ ,  n 0 f~ 1K~**n C**, where K** and C** 

are defined as in [10], K** c K ,  and Ci**~C, .  Thus L n  A i ~ l  Kin Ci  ~ q~, 

hence L n n ~'=1 K i ~  Ci ~ ~P by our initial observation. 

The next result is essentially proved in ([5] Lemma 1) by using tensor product 

methods. Our proof is based on the principle of local reflexivity. 

LEMMA 3.1. Let X and Y be Banach spaces with dim Y < oo. Let F be a 

finite dimensional subspace of X * ,  let R be an operator from X* into Y and 

let e > O . Then there is a weak * continuous operator S from X* to Y such that 

( a )  = 

(b) [l S t[ < 11R lid + 
(c) S ' y *  = R ' y *  whenever R ' y*  belongs to X (X  being regarded as a sub- 

space of X**) .  

PROOF. The principle of  local reflexivity yields the existence of  an invertible 

operator T from E = RangeR* into X such that T [ ~ x  = IE~X, f ( T e ) =  ef 

for all e e E  and f e F  and ilril,llr- l] < 1  + e .  The operator S =  [TR*]* 

maps X* into Y** = Y, it is obviously weak * continuous and i f f e  F ,  y * e  Y* 

then S f (y*)  = f ( T R * y * )  = (R'y*)  ( f )  = y*(Rf)  and hence S f = R.f . Also, 

II s [I = II TR* tl =< II rll II R II =< (1 + z)II R I[" Finally, if y* e Y* and R ' y*  e X then 

R ' y *  = TR*y* = S ' y * .  This completes the proof. 

COROLLARY 3.2. If, in addition to the assumptions of the preceding lemma we 

have that Y c X* then there is an operator T on X with T* = S ,  where S is the 

operator constructed in Lemma 3.1. If, moreover, R is a projection then S (and 

hence, also T) can be chosen to be a projection. In both cases S 'x**  = R ' x**  

whenever R 'x**  ~ X .  
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PROOF. The first assertion is an easy and well known consequence of the weak * 

continuity of S. To prove the second assertion, let R be a projection, replace 

F by F '  = span {FU Y) and construct S as before. Then S[e, = R]F, and hence 

Sy  = R y  = y for all y ~ Y. The last assertion follows from (c) of Lemma 3.1. 

We now strengthen the principle of local reflexivity as follows: 

THEOREM 3.3. Let X be a Banach space (regarded as a subspace of  X**) ,  

let E and G be finite dimensional subspaces of X** and X*,  respectively, and 

let 1 > e > O. Assume that there is a projection P f rom X** onto E with 

II P II = M Then there is a one-to-one operator T f rom E into X and a pro- 

jection Po f rom X onto T(E) such that 

(a) Te -- e for all e ~ E n X 

(b) f ( T e )  = e ( f )  for  all e ~ E  and f ~ G .  

(c> l[ z II II T-'ll =< 1 -{-e 
(d) liPoil =< M(~ +~). 
If, in addition, P is weak * continuous then Po can be chosen to satisfy (a), 

(b), (c), (d) and 

(e) P**x** = Px** for all x** ~ X** for  which Px** ~ X .  

PROOF. By Corollary 3.2 there is a projection Q on X* such that Q*(X**) -- E 

and [] Q [] =< (1 + ¼ 0 ][ P I1" In view of the principle of local reflexivity, putting 

F = Q(X*), there is an operator T from E into X such that f ( T e )  = e( f )  for 

all e ~ E a n d f ~ s p a n { F U G ) ,  TIE~x = IE~x, and 11 TII,11 Z- '  I1 <1 +¼~ 
NowputPo-- z0*lx-Then {IPo II ~ Ilzll II'Q* II--II TII,IIQII =<(X + 0lIP!i- 

If e~ E and x* E X*, then (Q*Te)x*= (Qx*)(Te) = e (Qx*)= (Q*e)x* = e(x*); 

whence Q*Te = e, and hence TQ*(Te) = Te .  Hence Polv(E) = IT(~) and of 

course Po(X) c T(E) ,  so Po is the desired projection onto T(E).  

To prove (e), let P be weak * continuous; then we may assume that Q* = P .  

By Lemma 3.1 (c) and Corollary 3.2 the projection Po constructed above satis- 

fies the equality P**x** = Q'x** whenever Q'x** ~ X .  This proves Theorem 

3.3. 

COROLLARY 3.4. Let X** be a 7za space. Then X is a n~+ ~ space for every e > O. 

PROOF. Let E o be a finite dimensional subspace of X (X regarded as a sub- 

space of X**). Since X** is a zca space, by Lemma 2.5, given e > 0, there is a 

finite dimensional subspace E c X** such that Eo c E and a projection P from 
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X** onto E with 1[ P II --< ~ ÷ In view of Theorem 3.3 there is a one-to-one 

operator T: E ~ X and a projection Q on X such that T leo = 1~o, Q(X) = T(E) 

and II Q II =< ~ ÷ ~  xt follows that X is a rex +~ space. 

4. The strueture of  X and X* 

In this section we investigate the relations between the structure of X and that 

of  X*.  We begin with 

THEOREM 4.1. Let X be a separable Banach space. Then the following 

assertions are equivalent: 

(a) X has a f.d.d. 

(b) There are a separable subspace Y c X* and sequences {T~) and {Pn} 
of operators with finite dimensional ranges satisfying the following conditions: 

(4.1) Pn: X ~ X ,  P*(X*) ~ Y and Tn: X* ~ Y for all n. 

(4.2) P~x ~ x for all x ~ X ,  The ~ Y for all y ~ Y and sup, 11 T~ 11 < oo. 

(4.3) The operators {Pn} are projections 

(c) Exactly the same as (b), except that (4.3) is replaced by the condition 

(4.4) The operators {Tn} are projections. 

Moreover, if  either (b) or (c) hold, the sequence {Qi} determining the f d . d .  

for X may be chosen such that {Q*[ r} determines a f.d.d, for Y. 

PROOF. It is obvious that (a) implies (b) and (c). Let us prove the implication 

(b) ~ (a). It suffices to show the existence of  a uniformly bounded sequence 

{Qn} of projections on X with finite dimensional ranges spanning X such that 

QnQk = QkQ~ = Qmin(k.n) (indeed then, the subspaces F1 = Q l(X), Fn = (Qn - Q~- 1(X) 

for n > 1 form a finite dimensional decomposition for X).  The main tool in the 

proof is the following 

LEMMA 4.2. Let X be a Banach space satisfying (b) above, let E and F 

be finite dimensional subspaces of X and Y respectively and let 1 > s > O. Then 

there is a projection Q with finite dimensional range on X such that 

(4.5) Qe = e for all e ~ E 

(4.6) Q * f = f  for f ~ F .  

(4.7) Q*(X*) c y 
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(4.8) It Q 11 < 2c + 2K + 4cK where c = supn II P~ I1 and K = sup~[I T~ II 

(4.9) Q(X) is e-close to P~(o(X) for  some integer n(i). 

We will prove Lemma 4.2 after we complete the proof of Theorem 4.1 to which 

we now return. Let {x,} and {y~} be dense sequences in X and Y respectively 

with x i = Ya = 0 and let {e~} be a sequence of positive numbers. We proceed 

by induction: let Q1 = P1, let k > 1, and suppose that the projections 

Q1, Q2," ' ,  Qk on X have been chosen such that the following conditions are satis- 

fied for all 1 < i , j < k  

(4.10) Q~Qj = QjQi = Q~i~(~,i) 

(4.11) Q,(X) = {xl, x2 , ' " ,  x~} 

(4.12) Y =  Q*(x*) = { y l , y z , ' " , y i }  

(4.13) [I Q, 1[ < 2c + 2K + 4cK where c = supn I1P~ II and K = sup~ II II 

(4.14) Qi(X) is e~-close to P~(o(x) for some integer n(i). 

Now let E be the finite dimensional subspace spanned by {Xk+l}t3 Qk(X) 

in X and let F = span({yk+l} t3 Q*(X*)) in Y. By Lemma 4.2 there is a pro- 

jection Q = Qk÷ ~ with finite dimensional range on X such that (4.5)-(4.9) are 

satisfied with ~ = ek+ ~ and some integer n = n(k + 1). It follows that (4.13) 

and (4.14) are satisfied for i = k + 1 while (4.11) and (4.12) are yielded by (4.5), 

(4.6) and the induction hypothesis. If  i =< k then Qk+ 1Qi = Qi and Qk+iQi* * = Q* 

and hence QiQk+i = Qk+lQi = Q~. The sequence {Q~}~=l obviously satisfies 

(4.10)-(4.14) and therefore it defines a finite dimensional decomposition for X 
, X ~  oo while {Qk( )}k=l span Y and hence the restrictions Q* [r determine a decom- 

position for Y. This proves the implication (b) ~ (a). The proof of the impli- 

cation (c) --* (a) is similar and is based on the following analogue of Lemma 4.2: 

LEMMA 4.3. Let X be a Banach space satisfying (c), let E and F be finite 

dimensional subspaces of X and Y respectively and let 1 > e > O. Then there 

exists a projection Q with finite dimensional range on X such that 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

Qe = e for  all e e E 

Q f  = f for all f e F 

Q*(x*) ~ r 

II o I1 --< 2c + 2K ÷ 4cK where c = sup. I[ P .  II and K = sup. II T, II 

Q*(X*) is e-close to Tn(X*) for  some integer n. 
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The proof  of the lemma will be given later. As in the first part, assume that the 

projections Q1, Q2,'",Qk on X have been chosen such that (4.10)-(4.13) are 

satisfied in addition to the condition 

(4.20) Q*(X*) is e~-close to T,(o(X* ) for some n(i). 1 < i < k. 

Put E = span({xk+l} W Qk(X)) and F = ({Yk+I}UQ*(X*)); then by using 

Lemma 4.3 (in the same way Lemma 4.2 was used in the first part) one can find 

a projection Qk+ 1 satisfying (4.10)-(4.13) and (4.20) with i = k + 1. The sequence 

(Ok) obviously determines a f.d.d, for X while span{Q*(X*))L1 = Y and hence 

the restrictions Q* [r determine a f.d.d, for Y. This proves Theorem 4.1. 

PROOF OF LEMMA 4.2. Let 3 be a positive number such that 3 dim(F) < ¼ and 

let m be so large that l[ Tin f - f  II --< [I f II for all f e  F .  The proof  of  Lemma 

2.4 then shows that there is an operator T with finite dimensional range from 

X* to Ysuch that T f  = f f o r  a l l f ~ F  and 1[ T 11 ---- (3/2)K. By Lemma 3.1 there 

is an operator S on X satisfying the equalities S*(X*)= T(X*) and 

S ' f =  T f = f f o r  a l l f e F  and having norm Ilsll -<-- 2K; then of course S has 

finite dimensional range since S* does. Now let G denote the span of E and range S 

in X .  Then G is finite dimensional; let 7 be a positive number smaller than ½ 

satisfying ~ dim G < e/4 and choose n so large that [I P.g - g II = -<- vii g II for all 

g e G. Then by Lemma 2.4 (b) there is a projection P with finite dimensional 

range on X such that Pg = g for all g ~ G, IIP II --< 3/2liP.If _-< P(X) is e-close 

to P,(X) and P* and P* have the same range. We claim that Q = S + P - SP 

is a projection on X having all the desired properties. Evidently (4.7) and 

(4.8) hold immediately, and of course Q has finite dimensional range. 

We have that I - Q  = ( I - S ) ( I - P ) ,  whence I - Q * =  ( I - P * ) ( I - S * ) .  

Since range s c r angeP ,  null S * =  (rangeS) ± ~ nullP* = (rangeP) ±, whence 

( I - S * )  [,,uP* = I[ , ,nr*,  and hence ( I - P * ) ( I - S * )  is a projection onto the null 

space of P* .  Hence Q* and thus Q is indeed a projection; moreover range Q = 

(null Q*)± = (null P*)± = range P ,  whence (4.9) holds by the definition of P .  

I - Q *  = 0 on F since I - S* = 0 on F, hence (4.6) holds, and I - Q = 0 on G, 

thus (4.5) holds (since G = E),  so the proof  of Lemma 4.2 is complete. 

PROOF. OF LEMMA 4.3. The arguments here are very similar to those of  the 

preceding proof. Let ~ satisfy 0 < 6 .  d im(E)<  ½ and choose m so large that 

II P , , e - e  I[ < 6 II e 11 for all e EE. By Lemma 2.4 there is an operator P with 

finite dimensional range on X such that Pe = e for all e e E, P*(X*) = P*(X*) ~ Y 
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and 11P [I --< 2c. Let H denote the span of P*(X*) and F in Y, let ~ satisfy the 

inequalities ~0 < 7"dim(H) < e/4 and choose n large enough so that 

II T , h - h  [I = -<- Y [1 h I[ for all h e H. By ]_emma 2.4(b) there is a projection T on 

X* such that Th = h for all h ~ H,  T(X*) c Y, I[ T [[ __< ~K and such that T(X*) 

is e-close to T,(X*). Using Lemma 3.1 one can find a projection S on X such that 

S*(X*) = T(X*),  S* In = In and II S ][ _<_ 2K.  As in Lemma 4.2 it can be shown 

that ( I - S ) ( I - P )  is a projection from X onto ( I - S ) ( X )  and that 

Q = I - ( I - s ) ( i - P )  = s + P - s P  

is the desired projection. Lemma 4.3 is thus proved. 

The proofs of Lemma 4.2 and Lemma 4.3 yield, respectively, the following 

two results: 

LEMMA 4.4. Let X be a n z space and X* have the #-m.a.p. Assume that 

E and F are finite dimensional subspaces of X and X* respectively and let 

e>0.  Then there is a projection Q with finite dimensional range on X such that 

Q IE = I~, Q* [r = IF, H Q ][ <-- 2# + 22 + 4p2 and such that Q(X) is e-close to 

some subspace E, belonging to the family  {E,) which defines the n-structure 

of X .  

LEMMA 4.5. Let X be a Banach space and assume that X* is a nx space. 

Let E and F be finite dimensional subspaces of X and X* respectively and let 

e > O. Then there is a projection Q with finite dimensional range on X such 

that Q ]E = IE, Q [v -- It', [] Q ][ < 42 + 422 and such that Q*(X*) is e-close 

to one of the subspaces E~ which define the re-structure of X* .  

The proof  of  Lemma 4.4 is essentially the same as that of Lemma 4.2. To prove 

Lemma 4.5 we will show that X has the 2-m.a.p. Once this is accomplished, the 

lemma will follow from the proof of Lemma 4.3. By the definition of the ~z z 

spaces there is a net {T~)~ ~A of projections with finite dimensional ranges on X 

such that T, ~ I strongly and i[ T, I[ < 2 for every ~ ~ A. Let 2 ' >  2, then, for 

each ~ there exists, by Lemma 3.1, a projection S, on X such that 

S*(X*) = T,(X*) and ][ S~ ][ < 2 ' .  It follows that S* ~ I strongly and hence 

S,x ~ x weakly for every x ~ X .  Standard arguments (see e.g. [2] p. 477) show 

that there is a net {Pp} of  operators on X such that Pp - ,  I strongly and each 

Pp is of the form P~ = Z i~a(ioaiSi, where a(fl) is a finite subset of A,  ai > 0 

and E ai = 1. Obviously [1Pp I[ < 2' and hence X has the 2'-m.a.p. for every 

2' > 2, which implies that X has the 2-m.a.p. 
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REMARK 4.6. The sequence {ek} appearing in the proof of Theorem 4.1 as 

well as conditions (4.9), (4.14) and (4.19) are of no importance there. However, 

they p l ay  a significant role in the following sense: Our proof shows that the 

natural projections of the f.d.d, we construct can be chosen so that the subspaces 

Qk(X) (resp. Q*(X*)) are as close as we wish to "nice"  finite dimensional sub- 

spaces of the ~-structure of X (resp. the structure of Y). 

Let us now pass to the 

PROOF OF THEOREM 1.3. Let (a) be satisfied, then, by Lemma 4.4 a sequence 

{Qk) of projections with finite dimensional ranges on X can be constructed 

by induction, as in the proof of Theorem 4.1, such that Q,Qk = QRQn ~ Qrain(k.n), 

X co span(Qk( )}k=l = X and sup, [I Q, I1 < ~ Obviously {Qk} defines a f.d.d, in X.  

Let (b) hold; then by Lemma 4.5 a sequence (Qk} with the same properties can 

be constructed. In both cases, if X* happens to be separable, then the (Qk} can  

be chosen so that {Q,)~o=l defines a f.d.d, in X*, i.e. X has a shrinking f.d.d. 

Hence, if (c) is satisfied and X ~ Y* for some Banach space Y then the preceding 

argument yields a f.d.d, in Y with natural projections (Qk} for which {Q*} defines 

a f.d.d, in Y*. Since X ..~ Y*, X has the f.d.d.p. Finally, let (d) hold, let {d,} 

be a dense sequence in X and fix n. Since (Prod1, ... Prod,), ~ (dl ,  ..., d,,) weakly 

in X @ . . - ® X ,  there exist a positive integer b(n) and non-negative scalars 
n n b ( n )  ~ n D  ~1 ai, 1 _< i _< b(n) with ~ b(,,i= 1 a"i = 1 and ab(,) > 0, such that l[ ,= l t t i a i u j - d j  II 

< 1In for atl j ,  1 < j < n (see e.g. [1] p. 40, Th. 2). Thus putting T,, = Z ]~ )~P~ ,  

T, ~ [ strongly. Moreover T*(X*)  = P~(,)(X*). For if y~ b(,)i=l "*i'L i ~ _~_  0 

then ~b~,~ a~p1p,(x ) = Z~(=,)a.~P~x = PlX = 0. Proceeding by induction we 

obtain that ( ]~ i=lb(")a~)Pjx = 0, whence Pjx  = 0 for all 1 =< j =< b(n),  hence 

T, and P~(n) have the same null space. We also have immediately that 

P*(X*) = P*+I(X*). Put Y = span{P*(X*)}~=t then P , y  ~ y for all y E Y and 

T*(X*)  ~ Yfor all n. Hence, by Theorem 4.1 X has the f.d.d. 

REY~ARI( 4.7. Theorem 1.3(d) is proved in [4] under the stronger assumption 

that Pn ~ I strongly. Let us also note that from Theorem 1.3 it follows in par- 

ticular that every separable reflexive zc space has a f.d.d. 

Lemmas 4.4 and 4.5 yield the following 

COROLLARY 4.8. I f  X*  is arc space, so is X .  I f  X is a ~ space a n d X *  has the 

b.a.p., then X ~ is a ~ space. 
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The above results deal with finite dimensional decompositions and weaker 

structures. Let us now discuss bases. 

THEOREM 4.9. Let X be a separable Banach space. Then the following 

assertions are equivalent: 

(a) X has a basis 

(b) There is a separable subspace Y c X* with a basis and sequences 

{Sn} and {Pn) qf operators with finite dimensional ranges satisfying the fol- 

lowing conditions: 

(i) Pn:X ~ X ,  P*(X*) c Y and Sn: X* - '  Y for  all n. 

(ii) PnX "-+ X for all x e X ,  SHy - ,  y for all y e Y and suPn [] S n[I < oo . 

PROOF. The implication (a) ~ (b) is immediate. To prove (b) ~ (a), let (Yn} 

be a basis of Y and let {U,,} denote its natural projections (Un( ]~ ~aiy~) = ~';aiy~). 

Put Y, = span{yi,y2, "",Yn}, fix n and choose k so large that t] SkY--Y [I < 3 II .V [I 

for all y e. Yn, where (5 is a positive number satisfying fin < ½. Put 7 = supn [I Sn []; 

then by Lemma 2.4, there is an operator S,~ from X* to Y such that S~y = y 

for all y e Yn and II s'll =< 2~. Let b = sup ]l Um i/; then the operator 

T, = UnS" is a projection from X* onto Yn with H Tn[]< 2b7 = c. It is 

easy to see that T,y ~ y for all y ~ Y and hence condition (c) of Theorem 4.1 

is satisfied. By Theorem 4.1 there is a f.d.d, of X determined by a sequence 

(Qk} of commuting projections such that SUpk I] Qk 1t < 2C + 2K + 4cK, where 

K = supn 1[ Pn [l" Moreover, given e > 0, the projections Qk can be chosen (see 

(4.20)) so that for each k, Q*(X*) is e-close to a subspace T,(k)(X* ) = Y,(k). In 

view of Lemma 2.2, in order to complete the proof  it su~ces to show that each 

of  the decomposition's subspaces ( Q k -  QR-1)(X) has a basis with constant b k 

such that SUpk b k < o0. To do this put M = 2c + 2K + 4cK,  assume 

that e(1 + M ) <  ¼ and fix k. Consider the spaces E 1 = Yn(k), E2 = Q*(X*), 

F1 = Y,(k-1) and F2 = QI*-I(X*). Put B1 -- Un(k_l)l rn(k)andB 2 = Qk*-I 1~; 

then for each i = 1, 2,  B~ is a projection from E~ onto Fi, 

11 B, II =< c, II B~ I1--< 2c + 2K +4cK - -  Mand~l[n~ I [ + ~(1 + IIB~II)<_2~(,+M) 
< ½. Since E 2 and F2 are e-close to E~ and F~ respectively, the assumptions of 

Lemma 2.3 are satisfied. Therefore there is an invertible operator V from 

( I -  B1) (El) n(k) = span{yi}~=~(k_,)+l onto (I--B2)(E2) = ( Q * -  Q*- l ) (X*) ,  such 

that [] VII II V-~ II --< 3(, + IIB~ II)(~ ÷ II B~ If) =< 3(1 + c)(1 + M) = M o. But 
( I -  B l)(E t) has a basis Yn(k- l)+ l ,  Yn(k-1)+ 2 , ' " ,  Yn(k) with constant _< b and hence, 

by Lemma 2.1(a) (Q* - Q*- l ) (X*)  has a basis with constant < Mob.  It follows 
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from Lemma 2.1(c) that each decomposition subspace (Qk- Qk-1)(X) has a 

basis with constant < 2 b M M  o . This concludes the proof of Theorem 4.9. 

REMARK 4.10. It follows from the above proof that {Q*[X*]} spans Y, and 

hence the biorthogonal functionals to the basis constructed for X,  form a basis 

for Y. It then follows easily (cf. the proof of Theorem 1.4(b) below) that if X 

has a basis and X* satisfies the b.a.p., then for every separable Y c X* there is 

a basis (y,)  of X with biorthogonal functionals (y*) such that span {y*},  = i ~ Y. 

From Theorem 4.9 easily follows the 

PROOF OF THEOREM 1.4. (a) Let X* have a basis {y,} and let T, denote its 

natural projections. Let sup, [1 T, [] = K; then by Lemma 3.1, for each n there is 

a projection S,  on X such that S*(X*)  = T,(X*)  and II S,  ]f < 2K.  Obviously 

S* ~ I strongly and hence S , x  ~ x weakly for every x e X.  As was mentioned 

before, there are convex combinations P, = ~ , ( , ) a i S  ~ which tend strongly 

to I on X.  Put Y = X*; then, as remarked before, our proof of Theorem 4.9 

shows that X has a basis {x,} such that its biorthogonal functionals are a basis 

of Y. 

(b) Let X* be separable and have the b.a.p, and let U, be the natural pro- 

ections of the given basis of X.  Put Z = X*, Y = X, X regarded as a subspace 

of X** = Z* and T, = U~**. Using Lemma 3.1 it is easy to show that assumption 

(b) of Theorem 4.9 is satisfied with Z equal to the " X "  of Theorem 4.9, and hence 

Z has a basis. By part (a) of this theorem, since Z = X*,  we get that X has a 

shrinking basis. Theorem 1.4 is thus proved. 

REMARK 4.11. A Banach space B is said to have the approximation property 

if for every compact set K c B, and 8 > 0, there exists an operator T on B with 

finite dimensional range such that [[ T k  - k [] < 8  for all k e K .  It follows from 

the results of [3] (see Th. 8 §4 and Props. 35, B2 and 40 §5) that if X* is separable 

and has the approximation property, then X* has the 1-m.a.p. (and hence, in 

particular, X* has the b.a.p.). Thus by Theorem 1.4, if X has a basis and X* 

is separable and satisfies the approximation property, then X* has a boundedly 

complete basis; on the other hand if there exists a Banach space failing the 

approximation property then by a recent result of Lindenstrauss, there exists a 

space X with a basis such that X* is separable and fails the approximation pro- 

perty (cf. [8], Corollary 3 and the remark preceding Corollary 4). Thus the 

question: "For  all Banach spaces X ,  if X has a basis and X* is separable, does 
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X* have a basis?" is equivalent to the question: "Does every Banach space 

satisfy the approximation property?" 

It was observed by Lindenstrauss in [8] that our Theorem 1.4 and his results 

together, imply that every separable conjugate space satisfying the approximation 

property is a factor of a space with a basis. Combining our results with those of 

Lindenstrauss [8] and a result of Petczyfiski and Wojtaszczyk [13], we obtain 

the following 

COROLLARY 4.12 (a) There exists an absolute constant K(<__ 1612) such that 

f B is a finite dimensional Banach space, then there exists a finite dimensional 

Banach space H such that B O H has a basis with constant lcss than or equal 

to K .  

(b) A separable Banach space satisfies the b.a.p, if and only if it is iso- 

morphic to a complemented subspace of a space with a basis. 

PROOF. Our proof of Theorem 4.9 yields that there is a function g of two 

real variables, valued in the positive reals, such that if a Banach space X has a 

basis with constant b and X* satisfies the fl-m.a.p, and is separable, then X* 

has a basis with constant less than or equal to g(b, fl). (A crude upper 

estimate for g is g(b, fl) < 2bMEMo, where M = 2b 2 + 4fl + 16bEfl and 

M o = 3(1 + 2b 2) (1 + M)). 

Now it follows immediately from the results of [8] that if A is a separable 

Banach space, then there exists a Banach space Z so that Z** has a basis with 

constant less than or equal to 2, and d(Z**/Z, A) <= 2; choose Z satisfying these 

conditions for A = B*. 

Then Z** and hence Z* satisfy the 2-m.a.p. by Lemma 3.1. Regarding Z c Z** 

and Z* c Z***, as is well known there is a (unique) projection P from Z*** 

onto Z* with kernel Z ' ,  and [IP [1 = 1. Then d(Z±,B) ___< 2, and in particular 

Z -L is finite dimensional. It follows that Z*** satisfies the 4-m.a.p. and hence 

Z*** has a basis (b,) with constant less than or equal to 2 = g(2,4). By Lemma 

2.4, there is a subspace G of Z*** with Z ' c  G and d(G, span{bi}~=l)< 2, 

where m = dim G. Letting H = PG, we have that d(Z ± • H, G) __< 4,  and hence 

d(B @ H,  span(bi}~'=l) < 16. Thus B @ H has a basis with constant less than 

or equal to K = 162. (A crude upper bound for 2 is 1611.) Thus (a) is proved. 

Turning to (b), we have that the " i f "  part is immediate, so we prove the only 

if assertion. Let X satisfy the b.a.p. By Theorem 1.1 of [13], there is a space Y 

with a f.d.d. {Bn}~= 1 such that X is isomorphic to a complemented subspace 
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of Y. For each n choose H,  finite dimensional such that B, @ H,  has a basis with 

constant < K .  Now put D = ( ~ = ~ @ H , ) 2 ;  then { B , @ H , } , ~  is a f.d.d. 

for Y @ D. Thus by Lemma 2.2 Y • D has a basis, and of course X is isomorphic 

to a complemented subspace of Y @ D. Q.E.D. 

REMARK 4.13. It is shown in [12] that there exists a Banach space U such 

that U has a basis and every space with a basis is isomorphic to a complemented 

subspace of U. Thus Corollary 4.12 shows that every Banach space with the b.a.p. 

is isomorphic to a complemented subspace of U, from which it is easily seen that 

any space V which has the b.a.p, and is complementably universal for spaces 

having the b.a.p., is isomorphic to U. (This extends some of the results of [13].) 

5. An application to L~°p spaces 

Let 1 __< p < ~ ; then we denote by Ip" the space of all n-tuples ~ = (~1, ~2, "", ~.) 

of numbers with II ~ I1 = ( z 7=1 I~i IP) lip if 1 < p < ~ and [l ~ [I = maxl<_i<, I c~i I 

if p = o~. A Banach space X is said to be an ~ap,~ space (cf. [9] p. 283) if for 

every finite dimensional subspace E of X there is a finite dimensional subspace 

F of X such that E c F and d(F, lp) < 2, where n = dim F .  A Banach space 

is called an ~ p  space if it is an ~ p  ~ space for some 2 < oo. 

THEOREM 5.1. Let 1 < p < ~ and let X be a separable ~q'p space. Then  

X has a basis. 

PROOF. We may and shall assume that X is infinite dimensional. 

We consider first the case 1 __< p < c~. It is known (see [10] Th. III) that every 

A°p space X is a ~z space and that X* is an L~q space, with p-1 + q_ ~ = 1 and 

1 < p __< ~ .  It follows from Theorem 1.3 that X has a finite dimensional de- 

composition determined by the projections {Q,}. Put P, = Q , -  Q,-1,  (with 

Qo denoting the zero operator); then since X is an A°p.x space for some 2, for 

each n there is a finite dimensional subspace F,  c X such that E, = P,(X) _~ Fn 

and d{Fn, laJ "1} < 2, with d(n) = d imF. .  Let c = sup. ]l P. ]] , 

G. = (Iv. - P . ) (F . )  and G = ( ~ @ G.)~,; 
.=1 

then the fact that sup. I[ I -  P. I1 < 1 + c  easily implies that G is isomorphic to 

a complemented subspace of lp, and hence, by [11], G is isomorphic to lp. It 

follows from [9] (p. 311 Proposition 7.3) that if 1 =< p < oo then X has a comple- 
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mented subspace isomorphic to I v . Let H be a subspace of X such that H ® Ip ,,~ X;  

then because I v ® Ip ~ I v, we get that X ~ lp ® H ~ (l v @/p) ® H ~ I v @ (Ip @ H) ,~ 

I v ® X , . ~  G @ X .  Let U, be the natural projection from G = ( Y ~ a  @G',)v 

onto the nth component  G, and define S',: G ®  X ~ G @ X by S ' , (g+x)  = U' ,g+ P,:, 

for every g + x~ G @X. Then it is easy to see that ( ~ = x S j } ~ = x  defines 

a finite dimensional decomposition in G ® X and S',(G ® X) = G, ® E',. Noting 

that sup,, d{G', ® E',, F',} = b < oo we get that for each n,  

n d{G', @ E,, Ip} < d{G, @ E,, F , } .  d{F,, Idp (")} < b2. 

But 1~ (") has a basis with constant 1, therefore, by Lemma 2.1(a) each space 

G, ® E', has a basis with constant < b2. It follows from Lemma 2.2 that X ~ G O X  

has a basis. This proves the theorem for 1 < p < c~. 

Assume now that p = oo. We still can construct the finite dimensional de- 

composition for X.  Since X is an ~ o , ~  space, for each finite dimensional sub- 

space E c X there is a finite dimensional subspace E c F and a projection P 

f r o m X  onto F such that d{F,l~ ~(F~} _<__ 22 and [IPH __< 22. By Remark 4.6 the 

projections Q, of  the decomposition of X can be chosen such that d{Qk(X), l~ k) } 

< 32 where d(k) = dim Qk(X). It tbllows from Lemma 2.1 that supkd{Q~(X*), I d(k~ } 

< Go and therefore the space Y = span{Q~(X*)}~= 1 is a ,  Z~al space. The (already 

proved) first part  (1 < p < ~ )  implies that Y has a basis, and since Q~y ~ y 

for all y ~ Y we get by Theorem 4.9 that X has a basis. This completes the proof  

of  Theorem 5.1. 

REMARK 5.2. Let 1 < p < ~ and let X be a separable infinite dimensional 

£'qv space. By Remark 4.6, there is a f.d.d, for X with natural projections {Q',} 

such that sup,, d(Q,,(X), lap (',)) < ~ ,  where d(n) = dim Q.~(X). Although we know 

by 5.1 that X has basis, we do not know in genera1 (if p # 2) that there is a basis 

for X with natural projections (Q,) such that sup, d(Q',(X), Iv) < ~ .  

Appendix. To prove that V n L  c Vn-~-L (see the notations in Section 3), 

let y ~ V n L ,  let H be a finite dimensional subspace of Y* such that  

L = {x ~ Y: h(x) = 0 for all h EH)  and let D be the family of  finite dimensional 

subspaces G of Y* with G = H ,  directed by inclusion. For each G ~ D define 

T: Y-+ G* by ( T x ) ( g ) =  g(x) for all x E Y  and g c G .  Then as noted at the 

beginning of  the proof  of  Th. 3.1 of  [10], T**(V) = T(V).  Hence we may choose 

a vG6V such that  g(v~)= y(g) for all g e G ;  then also v a e L  since y (b )=0  
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for  a l l  h ~ H .  Thus  the  net  {vG) o ~ o converges to y in the  weak* topo logy ,  and  

has  i ts  range in V ~ L, whence y ~ Vt'3 L. 

Added in proof. C o r o l l a r y  4.12 and its consequences men t ioned  in R e m a r k  

4.13 have been independen t ly  discovered by A.  Petczyfiski.  His  p r o o f  yields  a 

much  bet ter  es t imate  on  the cons tan t  K o f  4.12 (see A.  Petczyfiski,  " A n y  separab le  

Banach  space wi th  the  bounded  a p p r o x i m a t i o n  p rope r ty  is a c omp le me n te d  

subspace  o f  a Banach  space wi th  a bas i s " ,  to appear ,  Studia Math.) .  

1, 
2. 
3. 
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